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1. Introduction. Our knowledge of a future event may take the form of a set
of probabilities pi, . . , Pn. For example, we might have probabilities of 3/8, 1/8,
and '/2 for rain, snow, and clear as tomorrow's weather. In communication theory
our interest is in the various events only as carriers of a coded message. For this
purpose Shannon's' entropy - Ep, log pi is the appropriate measure of our uncer-
tainty, and a function A Zpi log pi + B is a good measure of what it is worth to be
given these probabilities. In our weather example we care which event occurs.
Furthermore, we may be more interested in whether the sky is clear than in whether
rain or snow occurs if the weather is bad. In this paper we show that any convex
function of a set of probabilities may serve as a measure of the value of information
and that two such functions are equivalent in an appropriate sense if and only if
they differ by a linear function.

2. The Forecaster and His Client.-We get our quantitative measures of the
value of information from a situation in which a client pays a forecaster for pre-
dictions of a future event according to the following rules:

(i) The forecaster gives the client probabilities ql, . . , qn for the events, where
Eqi= 1.

(ii) The client takes action on the basis of these probabilities, and one of the
possible events occurs.

(iii) If the ith event occurs, the client pays the forecaster fi(ql, . . ., qn), which
is abbreviated fi(q).

(iv) We assume that neither the forecaster nor the client can influence the pre-
dicted event, although the forecaster can make experiments to help predict it, and
the client gets an amount which depends on both the action he takes and on the
event which occurs. In what follows, it is assumed that the forecaster and the
client both wish to maximize the expected value of their incomes.
Assuming that to the forecaster the probabilities of the possible events are pi, .

P., his expectation is Epifi(q) if he tells the client the q's. A payoff rule is said to
"keep the forecaster honest" if, regardless of the value of p = (pl, . . . , Pn), the
forecaster's expectation is maximized if and only if he puts q = p, i.e., qi = pi for
each i.
THEOREM 1. A payoff rule keeps the forecaster honest if and only if fi(q) =

(6/1qi)f(q), where f(q) is a convex function of q which is homogeneous of the first degree.
The expectation of an honestforecaster is then Epif2(p) = f(p).
We omit the proof. The derivative has to be taken in a suitable generalized

sense. f(q) is called a "payoff function" if it satisfies the conditions of Theorem 1.
I. J. Good2 considered the problem of paying the forecaster with the restriction

that fi(q) = F(qi), i.e., the payoff depends only on the probability assigned to the
event which actually occurred. He showed that putting F(x) = A log x + B keeps
the forecaster honest, and Gleason (unpublished) showed that this is the only F(x)
which does. The forecaster's expectation is then A Epi log Pi + B, i.e., he is paid
a fixed fee minus the expected uncertainty about the event after his prediction.
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3. The Client's Expectation.-Suppose that on the basis of the forecaster's pre-
diction the client chooses thejth of the actions open to him and that his payoff if the
ith event occurs is a j. His expectation will be g(p) = max aijpi if j is chosen

optimally.
From the theory of convex functions we have
THEOREM 2. Any function g(p) defined for pi > 0, pn > 0 which is convex

and homogeneous of the first degree can be written in the form max E aijpi. Unless

g(p) is piecewise linear, there will have to be an infinite number of actions j.
If we put f(p) = g(p), the client is eliminated from the picture, since under this

condition he turns all his gains over to the forecaster and is reimbursed for all his
losses. This is not a satisfactory solution to the problem, so let us see what payoffs
f are equivalent in their effect on the forecaster's efforts to get information.

4. The Forecaster's Experiments.-Assume that the forecaster has a priori
probabilities ri, . . . , r,, for the events, that he has a choice of m experimental pro-
cedures with expected costs to him of cl, . .,cm, and that the conditional proba-
bility of the kth outcome of the hth experiment given that the ith event will occur
is Skhi. The experiment chosen by the forecaster will depend on the c's, the s's,
and the r's and on the payoff function chosen by the client. We call two payoff
rules equivalent if, for any set of c's, s's, and r's, they lead to the same choice of
experiment by the forecaster.
THEOREM 3. f(q) and f*(q) are equivalent if and only if f(q) = f*(q) + Eaiqi,

i.e., if the two payofffunctions differ by a linear function of the q's.
The proof is omitted. Iff and f* are equivalent, then f1(q) = fi*(q) + aj, so that

the payoff rules differ by an amount which depends only on the event which occurs
and not on the forecaster's prediction. The forecaster's and client's interests will
be identical if we put f(q) = g(q) + Eaiqi. The as's are subject to negotiation be-
tween the client and the forecaster, and they determine both a base level of pay-
ment and also a betting relation between the client and forecaster. If f is normal-
ized so that f(1, O . . . , 0) = f(O, 1, . . , O) = . . . , the payment for a precise cor-
rect prediction is independent of the event predicted.

5. Conclusion.-The foregoing analysis shows that any convex function of a set
of probabilities will, under appropriate circumstances, be a measure of the value of
the information contained in a set of probabilities in the sense that it is an appro-
priate payment to a forecaster who furnishes the probabilities.
The intuitive content of the convexity restriction is that it is always a good idea

to look at the outcome of an experiment if it is free. For suppose that the experi-
ment has two outcomes, A and A *, which would give one probabilities p and p* for
the event in question. Let t be the probability that A is the outcome. If we de-
cide not to look, our expectation is f(tp + (1 - t)p*), while if we decide to look, our
expectation is tf(p) + (1 - t)f(p*).

Finally, we remark that there are yet more general ways of paying the forecaster.
For example, the client may agree to pay a certain fraction a of the costs of ex-
perimentation. Then the payoff function can be scaled down by a factor a with
the identity of interests still preserved. We hope to treat these matters on an-
other occasion.
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